Tentamen Metrische Ruimten, 03/07/03

- 1. Let \mathfrak{T} consist of all subsets U of the set of real numbers \mathbb{R} such that $\mathbb{R} \setminus U$ is finite, together with the empty set \emptyset .
 - (a) Show that $(\mathbb{R}, \mathfrak{T})$ is a topological space.
 - (b) Is $(\mathbb{R}, \mathfrak{T})$ compact?
 - (c) Is $(\mathbb{R}, \mathfrak{T})$ Hausdorff?

Justify the answers!

2. Let S_1, S_2, T_1, T_2 be topological spaces, and let $f_i: S_i \to T_i, i = 1, 2$ be two functions. Define

$$f_1 \times f_2 : S_1 \times S_2 \to T_1 \times T_2$$

by $(f_1 \times f_2)(x,y) := (f_1(x), f_2(y)).$

- (a) Prove that $f_1 \times f_2$ is continuous if and only if f_1 and f_2 are continuous.
- (b) Prove that if f_1 and f_2 are homeomorphisms then also $f_1 \times f_2$ is a homeomorphism.
- 3. Let the topological space T be Hausdorff. Show that for each point $x \in T$ the set $\{x\}$ is closed.
- 4. Determine the closure and the boundary of each of the following subsets of ℝ with the usual Euklidian metric. Which of these sets are dense or nowhere dense in ℝ? (ℚ is the set of rational numbers, ℤ the set of integers.)
 - (a) \mathbb{R} ;
 - (b) $\mathbb{Q} \cap [-1, 2)$;
 - (c) $\{\frac{1}{n} : n \in \mathbb{N}\};$
 - (d) $\mathbb{R} \setminus \mathbb{Q}$;
 - (e) $\mathbb{R} \setminus \mathbb{Z}$;
 - (f) \mathbb{Z} .
- 5. If T is a connected topological space containing more than one point, and if $\{x\}$ is closed for every point $x \in T$, show that the number of points in T is infinite.